跳转至

附录

常用曲线极坐标方程及其图形⚓︎

积化和差与和差化积恒等式⚓︎

积化和差 和差化积
sinαcosβ=sin(α+β)+sin(αβ)2\sin\alpha\cos\beta = \dfrac{\sin(\alpha + \beta) + \sin(\alpha - \beta)}{2} sinα+sinβ=2sinα+β2cosαβ2\sin\alpha + \sin\beta = 2\sin\dfrac{\alpha + \beta}{2}\cos\dfrac{\alpha - \beta}{2}
cosαsinβ=sin(α+β)sin(αβ)2\cos\alpha\sin\beta = \dfrac{\sin(\alpha + \beta) - \sin(\alpha - \beta)}{2} sinαsinβ=2cosα+β2sinαβ2\sin\alpha - \sin\beta = 2\cos\dfrac{\alpha + \beta}{2}\sin\dfrac{\alpha - \beta}{2}
cosαcosβ=cos(α+β)+cos(αβ)2\cos\alpha\cos\beta = \dfrac{\cos(\alpha + \beta) + \cos(\alpha - \beta)}{2} cosα+cosβ=2cosα+β2cosαβ2\cos\alpha + \cos\beta = 2\cos\dfrac{\alpha + \beta}{2}\cos\dfrac{\alpha - \beta}{2}
sinαsinβ=cos(α+β)cos(αβ)2\sin\alpha\sin\beta = -\dfrac{\cos(\alpha + \beta) - \cos(\alpha - \beta)}{2} cosαcosβ=2sinα+β2sinαβ2\cos\alpha - \cos\beta = -2\sin\dfrac{\alpha + \beta}{2}\sin\dfrac{\alpha - \beta}{2}

降幂公式⚓︎

正弦 余弦
sin2θ=1cos2θ2\sin^2\theta = \dfrac{1 - \cos2\theta}{2} cos2θ=1+cos2θ2\cos^2\theta = \dfrac{1 + \cos2\theta}{2}
sin3θ=3sinθsin3θ4\sin^3\theta = \dfrac{3\sin\theta - \sin3\theta}{4} cos3θ=3cosθ+cos3θ4\cos^3\theta = \dfrac{3\cos\theta + \cos3\theta}{4}

评论区

如果大家有什么问题或想法,欢迎在下方留言~