附录 常用曲线极坐标方程及其图形⚓︎ 积化和差与和差化积恒等式⚓︎ 积化和差 和差化积 sinαcosβ=sin(α+β)+sin(α−β)2\sin\alpha\cos\beta = \dfrac{\sin(\alpha + \beta) + \sin(\alpha - \beta)}{2}sinαcosβ=2sin(α+β)+sin(α−β) sinα+sinβ=2sinα+β2cosα−β2\sin\alpha + \sin\beta = 2\sin\dfrac{\alpha + \beta}{2}\cos\dfrac{\alpha - \beta}{2}sinα+sinβ=2sin2α+βcos2α−β cosαsinβ=sin(α+β)−sin(α−β)2\cos\alpha\sin\beta = \dfrac{\sin(\alpha + \beta) - \sin(\alpha - \beta)}{2}cosαsinβ=2sin(α+β)−sin(α−β) sinα−sinβ=2cosα+β2sinα−β2\sin\alpha - \sin\beta = 2\cos\dfrac{\alpha + \beta}{2}\sin\dfrac{\alpha - \beta}{2}sinα−sinβ=2cos2α+βsin2α−β cosαcosβ=cos(α+β)+cos(α−β)2\cos\alpha\cos\beta = \dfrac{\cos(\alpha + \beta) + \cos(\alpha - \beta)}{2}cosαcosβ=2cos(α+β)+cos(α−β) cosα+cosβ=2cosα+β2cosα−β2\cos\alpha + \cos\beta = 2\cos\dfrac{\alpha + \beta}{2}\cos\dfrac{\alpha - \beta}{2}cosα+cosβ=2cos2α+βcos2α−β sinαsinβ=−cos(α+β)−cos(α−β)2\sin\alpha\sin\beta = -\dfrac{\cos(\alpha + \beta) - \cos(\alpha - \beta)}{2}sinαsinβ=−2cos(α+β)−cos(α−β) cosα−cosβ=−2sinα+β2sinα−β2\cos\alpha - \cos\beta = -2\sin\dfrac{\alpha + \beta}{2}\sin\dfrac{\alpha - \beta}{2}cosα−cosβ=−2sin2α+βsin2α−β 降幂公式⚓︎ 正弦 余弦 sin2θ=1−cos2θ2\sin^2\theta = \dfrac{1 - \cos2\theta}{2}sin2θ=21−cos2θ cos2θ=1+cos2θ2\cos^2\theta = \dfrac{1 + \cos2\theta}{2}cos2θ=21+cos2θ sin3θ=3sinθ−sin3θ4\sin^3\theta = \dfrac{3\sin\theta - \sin3\theta}{4}sin3θ=43sinθ−sin3θ cos3θ=3cosθ+cos3θ4\cos^3\theta = \dfrac{3\cos\theta + \cos3\theta}{4}cos3θ=43cosθ+cos3θ 评论区 如果大家有什么问题或想法,欢迎在下方留言~